
Application
lifecycle
management

BUILD SERVICES

1

Enable’s unrivalled
approach to software
engineering is built on
the client rapport and
unwavering commitment
to quality that are the
bedrock of our company.

Introduction

This document will take you through the processes
involved in managing the lifecycle of an application,
from the initial application to the post-delivery
support that we provide.

This includes the initial set-up, scheduling and
assignment of tasks, tracking code changes during
development, supporting different versions of the
application across different environments (such
as development and production), user acceptance
testing, deployment of the application to a given
environment, roll-back procedures and flexible
support offered by our client services team.

At Enable, we challenge ourselves to go beyond the
modernising of ageing software and automating of
inefficient processes to seize every opportunity to
make significant improvements that will positively
affect your business on a daily basis. We do this by
asking the right questions to understand the fabric
of your organisation and produce the most effective
simple solutions.

2

T H E J O U R N E Y T O A
S U C C E S S F U L O U T C O M E

1. In the analysis phase, the application is
conceived and a specification document is produced.

2. The application enters the build phase.

3. For a new application, this is set in motion
by the creation of a new solution — the high-level
“container” used to organize all code related to a
single software product.

4. Our team carries out the work detailed in
the specification, making use of dedicated “feature”
branches for related areas of work. In-house testing
is undertaken to ensure each specification point has
been achieved.

5. The application is deployed to the user
acceptance testing (UAT) environment, where the
end-users of the software can test its performance in
real-life scenarios and any concerns can be addressed.

6. Once the UAT process has concluded, the
application is released to a live hosting environment.

7. The application will then be maintained and
monitored regularly so that any bugs detected can be
fixed without delay.

Our dynamic approach to the lifecycle of an
application ensures that all clients’ requirements are
understood and delivered by our engineering team
from its original conception.

Analysis New requirements

Client feedback

Support incidents

Specification

Build

Release
candidate

Production
software

User acceptance
testing

Live operation

33

Project governance
and work item tracking

S O L U T I O N P R E P A R A T I O N

Most projects will include a certain amount of ‘lead-
time’ which is the period between the initiation and
execution of a project. Tasks carried out during the
lead-time may include:

— Visual Studio solution set-up;
— Review of branching strategies;
— Azure DevOps Server iteration schedule and
sprint planning, including work item planning and
tracking;
— Preparation of work areas for QA, bugs and
reviews.

The requirements for the project — taken from the
project scope agreed with you — are loaded into
the project team’s backlog iteration as requirements
or user stories. The project scope is documented
and captured in contractual, functional and service
delivery documents.

The team now make use of custom-built solution
set-up scripts, which aim to streamline the process
of preparing a solution for development for the first
time on an individual team member’s machine. These
scripts automate a variety of common tasks such as
checking out the solution code from the centralized
source control, installing required packages, and
setting up local copies of databases.

T A S K A S S I G N M E N T

Each requirement or user story in the backlog will
have several child tasks created for it. Typically, these
will include planning/review, build and test.

Any estimated time is assigned to each task by reverse-
engineering the time calculated for the corresponding
requirement and the notes are reviewed alongside
this to ensure allocated times are appropriate for the
task.

T R A C K I N G

Tracking progress ensures that an application is
always moving in the right direction by providing a
rapid feedback cycle that identifies problems early.

The current status of a task will be updated as it
progresses and a typical workflow will involve a task
with a status of ‘Proposed’ being changed to ‘Active’
when a team member starts working on the item.

As they progress with the item, they will regularly
update the ‘Completed’ and ‘Remaining’ time assigned
to the task. Having access to such a large amount of
data on real task completion times allows the team to
optimize the estimation process for future projects.

When an engineer commits code, they will also
associate this code with the related task. This means
that should another engineer be reviewing the code at
a later date they can easily link it back to the original
specification point.

Once complete, the item will either be marked as
‘Resolved’ — if a review of the item is required by
another team member — or ‘Closed’.

A high-level overview of the team capacity and total
remaining hours (derived from the ‘Remaining’ time
assigned to each task) gives the project lead a clear
picture of whether the project is proceeding on
schedule and how much work is assigned to each
individual team member.

44

B U G S

After a team member has completed the build task
associated with a requirement, another member of
the team will pick up the testing task. If any bugs are
discovered during the testing process a new ‘Bug’
work item is created by the tester and, in most cases,
assigned to the team member that implemented the
functionality.

Any bugs raised during testing are then fixed and the
work item is marked as ‘Resolved’ and assigned back
to the tester for them to review.

Bugs may also be raised for pre-existing issues which
are not related to the current project’s requirements.
At any time throughout the engineering lifecycle, if
any such bugs are raised, they can be added to the
“Product QA” backlog of Cello – our in-house flexible
ticketing system. From there they will either be picked
up by the current engineering team or by an engineer
assigned dedicated time to review these backlogs and
resolve any issues.

Q A I T E M S

Quality assurance (QA) items are raised when
opportunities to improve the usability or accessibility
of a new feature are identified. They are typically
raised during user experience (UX) reviews between
the project lead and other senior managers in the
engineering phase but can also be raised by team
members at any point during the engineering lifecycle.

R E C O M M E N D A T I O N S A N D
N E W R E Q U I R E M E N T S

Our recommendations process allows the client and
Enable to jointly focus on risks and opportunities
that involve the technical underpinnings of a
solution. Topics that are commonly covered by this
process include technical modernisation, application
performance, security, refactoring and user
experience design. Each recommendation will have a
context as to why it has been raised and how it can be
addressed.

In some cases, our team may suggest that we need to
gain further insight into the client’s business processes
in order to understand the best way to move forward
with an idea. A topic may be referred to our analysis
team for one or more of the following the reasons:

— The suggestion alters the underlying design of
the product;
— Significant engineering work is required;
— The business requirements are unclear;
— It hasn’t been possible to locate relevant
requirements in existing specification documents;
— There may be a commercial impact.

The steps our team then follows are:

— Analyse requirements & write a specification;
— Estimate and perform a commercial review;
— Schedule the project;
— Build the software.

Sufficiently minor recommendations may instead be
tackled on an ad-hoc basis by an engineer outside of
scheduled project time.

55

Change management
and version control

Version control allows Enable to monitor changes
made by engineers and projects to have multiple
streams of engineering occurring concurrently. To
make this achievable, it is crucial that the source code
is developed with the source control and versioning in
place from the very start of a project.

Engineering work is primarily carried out on a central
master branch, with separate ‘feature’ branches
for the implementation of single features. Upon
completion of a project, a ‘release’ branch will be
made for that phase of work; this is the version which
will be used for the UAT and eventual Live release.

Version control enables engineering and support work
to happen concurrently by allowing changes made in
one branch to be merged into another. A support
ticket fix made in a live branch can be merged into
an engineering branch once any conflicting changes
have been resolved to prevent a regression when the
engineering branch is pushed to the live environment
at a later date.

Enable uses the popular open source software Git to
manage source code, which allows us to:

— Clearly track the difference between two or
more versions of the code;
— Review the history of code to determine the
effect of a single commit on the code base;
— Save time identifying the cause of problems;
— Organise our team’s work;
— Ensure the team’s work is properly integrated.

6

G I T

Git is an open source distributed version control
system aimed at data integrity and support for
distributed, non-linear workflows with the ability to
handle projects of all sizes with speed and efficiency.
These qualities make it an ideal choice for Enable’s
software engineering practices and it has become our
primary source control system.

Branching is a simple and efficient process in Git
so it is common that, for a phase of work, the main
“master” branch will be branched a number of times
into short lived engineering branches used by a sin-
gle engineer or a small team. These branches may re-
late to the implementation of a single feature and are
merged back into the master branch once the feature
has been completed.

Build

UAT

Live

master

2020-BS2

2020-BS1

Analysis

2020-BS4

7

Branching and merging
strategies

B R A N C H I N G S T R U C T U R E

Typically, a solution will consist of a master branch
for engineering work, and release branches for
deployments of a project phase to production and
UAT environments.

Project work – or significant bug fixes – will take place
on “feature” branches off of the master branch.
When the feature is complete, or the bug fixed, a code
review will be carried out with another member of the
team, and the feature branch will be merged back into
master.

O U R A P P R O A C H

Branching allows our teams of engineers to easily
collaborate inside one central code base.

For a new phase of work, all changes from the
engineering project team are completed on the
master branch.

While engineering work is being performed on the
master branch, there are likely to be support changes
made in the production branch and changes within
the UAT branch.

Changes made in the production and UAT branches
are actively merged down from older release branches
through to newer release branches and then finally to
the master branch, once the client has confirmed that
the change has resolved the bug or issue. This ensures
that any bugs fixed in these branches are also fixed in
any future phases.

Once the engineering phase of work has been
completed the lead engineer will create a new branch,
named after the new release candidate’s build slot
(e.g. 2020-BS1), by branching from the master branch.

8

M E R G I N G D U R I N G
D E P L O Y M E N T

When a phase of work is deployed to a new target
environment — e.g. the deployment of the UAT branch
to the live environment - the engineer performing
the release will check that any support fixes made in
the production branch have been merged from the
production branch to the UAT branch.

Once the engineer is happy that all outstanding
changes from the production branch have been
merged into the UAT branch, it will be deployed to the
live environment using the appropriate deployment
steps.

Once the engineer has confirmed that this has been
successful, the old production branch is deleted leav-
ing only the UAT branch (now production) and the
master branch.

C O M M I T M E S S A G E S

Enable has opted to take a standard approach when
providing comments for a commit message to aid
with merging activity.

When committing a fix or a new feature, the message
is suffixed with the ID of the associated Azure DevOps
work item, making it easy for future engineers to see
how and why a change was implemented. For non-
project work such as support tickets, bug-fixes and
recommendations, the ID of the relevant item from
our ticketing system, Cello, will instead be referenced.

When the change is merged into another branch, the
engineer performing the merge will instead prefix the
commit message with details of where the change is
being merged, for example “Merge from [2020-BS1]
to [master]”, followed by the details of the change.

Adding messages in this format makes it simpler for
other engineers to merge these changes to other
branches at a later date. This is particularly beneficial
for solutions where multiple phases of engineering
work are being performed simultaneously.

9

User acceptance
testing

Once our internal testing
is complete, clients are
invited to do their own
testing to make sure that
everything is delivered
to their satisfaction. This
process — which occurs
on test servers using
realistic data in a real-
life scenario — gives the
client an insight into how
the new system will fit
with their daily workflow
and gives them the
opportunity to have any
concerns addressed before
completion of the project.

User acceptance testing (UAT) benefits both the
client and the engineers as the client gains first-hand
confidence that the software will add real value to
their business while the engineers are assured that
the client is fully satisfied. This is one of the critical
software project procedures that must occur before
new functionality is rolled out.

Enable proactively estimates and schedules for the
UAT required by projects, which is typically calculated
as a percentage of the project build time. Although the
delivered project has already undergone extensive in-
house testing before delivery, experience has shown
us that end-user testing is invaluable for ensuring that
the deliverable fits a client’s requirements — client
satisfaction is, after all, paramount.

The UAT phase is formalised during the delivery
meeting, which takes place between the Client
Services manager and client when the project is
nearing completion.

The client is guided through the UAT process covering
any necessary prerequisites, the role of the Client
Services Manager in the process, and how to interface
with the Enable engineering team regarding reported
issues. Vital information is also communicated to the
client regarding weekly update emails and the release
schedule for any system changes for review. Time is
also allocated for the engineering team to act on any
UAT feedback provided by the client and progress is
continually logged, allowing efficient collaboration
whereby engineers can, if required, seamlessly
continue tasks started by others.

10

Once satisfied that the solution is ready for
deployment, the client formalises this with the Client
Services Manager who will then liaise with the team
in order to schedule the ‘go-live’ date which is then
shared with the client. This date is typically six weeks
after the beginning of the UAT phase.

Enable uses the custom built Cello ticketing system
which is designed to specifically handle the process of
issue tracking during the UAT process. This software
was designed to provide visibility and complete
transparency when raising and tracking issues by
keeping everyone in the loop about any issue.

Both Enable and the client can raise queries using this
software, and all responses are made visible to both
parties. A client may add and track issues through
the creation of a new UAT item individually and single
items are then distributed to engineers.

During the engineering process the Enable team may
use Cello to raise clarifications regarding the details of
the work being carried out, for example to clarify the
meaning of certain specification points.

With EnableFeedback from client

Closure

Requirement for
future project

11

Release management
and deployment

A modern software solution is no longer one
monolithic application deployed to one server and
there are often many applications making up a full
software solution which are deployed across many
servers.

We make use of a leading third-party deployment
automation tool called Octopus Deploy which is used
for deployment of code and performing a number of
key tasks, such as the storage of important variables
relating to a project.

Manually releasing to these servers and keeping
track of versions across different environments is a
time consuming and potentially error-prone task, so
automated deployments are key to enabling this level
of complex release management. The benefits of this
automation include:

— Helping to reduce the risk of human errors
(such as forgetting configuration changes or forgetting
to run scripts) so releasing becomes repeatable in a
much more reliable and predictable way;

— Taking the complexity away from deployments,
meaning that almost any member of the team would
be able to deploy updates to the applications;

— Providing a convenient way to deploy to a
completely new environment without the painstaking
process of ensuring each server is configured in the
same way. This ensures consistent environments
between development, UAT and live, as well as
scalability;

— Targeting the same build to be released across
multiple servers and environments so we are able
to release to UAT and, once tested, promote the
same build of the software to live (where the same
deployment process is used);

— Allowing for quicker and more frequent
releases to environments. For example, during
work on a project using automated deployment, we
deploy the latest code versions to our development
environments at scheduled times throughout the day.

Due to the advantages discussed above, Enable
uses automated deployments for software releases
wherever possible and, as with manual releases, we
operate to a formal release policy.

Part 1
Automated deployments

12

P R E - D E P L O Y M E N T C H E C K S

Before requesting a release, the engineer will perform
a series of checks. They will ensure:

— Downtime in the target environment has been
considered;

— All necessary merges have been carried out;

— Any requests on deploying data have been
respected;

— The deployment method is known;

— The Octopus Deploy configuration is complete
and all Octopus Deploy components are installed on
target servers;

— Any runtime dependencies have been installed
on the target servers;

— All application configuration files been
reviewed for settings that need to be configured in
the target environment;

— The configuration has been suitably
synchronised across all servers, if deploying to a web
farm or load balanced web servers;

— Email redirection configuration is in place
where required.

P O S T - D E P L O Y M E N T C H E C K S

Following every deployment Enable performs the
following checks:

— Testing to confirm that key areas of
functionality are working, including, in the case of a
deployment to fix a bug, that the bug has been fixed;

— Verify all application configuration files
contain the expected setting values;

— Attempt to test file system permissions;

— Monitor application service activity, diagnostic
logs and error feeds for signs of configuration issues.

13

Part 2
Manual deployments

Manual deployment of updates may be necessary in
certain scenarios. In this eventuality, Enable observes
a formal release policy dictating the steps that must
be followed when deploying software updates to a
production environment.

All steps are well documented and most commonly
undertaken by different roles with Enable maintaining
complete segregation of duties between software
engineering teams and support and hosting teams.
The process of manual deployment includes the
following steps:

— Release preparation: deployable assets and
accompanying documentation are prepared;

— Release request submission;

— Release execution: deployment of the assets
contained in the release;

— Release confirmation: verifying that the
deployment has been successful;

In rare cases where an issue is encountered during
the release that cannot be rectified quickly, the
software is rolled back to its previous state.

R E L E A S E P R E P A R A T I O N

An engineer prepares all of the files necessary for the
release and produces deployment instructions for the
IT team.

Often there are multiple assets or components to
each release such as website and application files,
scheduled process files and database scripts.

R E L E A S E S U B M I S S I O N

The release requestor submits a release request to
the release executor which will include all necessary
information required to successfully execute the
release.

This might include manual configuration updates, or
special instructions on running SQL scripts to apply
database updates.

R E L E A S E E X E C U T I O N

Prior to commencing with the release execution, the
release executor will contact the release requestor
to check whether they are available and ready to
support the release process during its execution and
to perform testing upon its completion.

If the release requestor is not available at this point,
the release will be delayed until a time when the
requestor is.

14

C H E C K S

Before any files are released or any database scripts
are run, backups of the existing files and data will be
taken and only once all the backups are taken is the
release executed. This may involve steps such as:

— Making the web application inaccessible and
displaying a temporary “holding” page. This may
not be required in cases where the release can be
completed quickly and will have no impact on users
currently interacting with the web application;

— Stopping any scheduled process due to be
updated during the release;

— Applying the updates to the application or
scheduled process using the assets included in the
release;

— Applying any database updates using scripts
included in the release;

— Applying any configuration updates required;

— Making the web application accessible and
removing the temporary “holding” page if necessary;

— Restarting any scheduled processes that were
previously stopped for the release.

R E L E A S E C O N F I R M A T I O N

As soon as the release has been completed, the release
executor informs the release requestor that it is ready
for testing. The release requestor will then test the
release and, if a problem is found, will liaise with the
release executor in order to figure out a solution as a
matter of urgency.

Any further updates required as a result will also go
through the exact same release procedure.

Once the release requestor has approved the release,
a member of the IT/Hosting team will be informed and
the client will be notified that the application has been
updated.

15

Part 3
Environments & safeguards

A hosting environment can be a collection of physical
or cloud devices, or a combination of both, which are
all beneficial options made up of load balancers, web,
database or background processing servers. Multiple
environments are used during the engineering
process of an application to allow for the testing of
new functionality within the application before it’s
released to a live application. Different approaches to
bug fixes are taken for each environment and these
approaches vary based on the impact of any code
changes which may occur.

U A T

Once a phase of work has been completed it is released
to this environment where it can be tested and the
client can confirm that the software is performing
as expected. Code changes carried out as part of
the UAT process are deployed to this environment.
To minimise the number of releases, Enable carries
out thorough testing of any new or changed software
code resulting from a build cycle in its development
environment prior to releasing to a client’s UAT
environment. The client is then encouraged to carry
out thorough UAT, with any identified bugs being
resolved in the UAT environment and subsequently
tested.

The entire software build in the UAT environment,
including any bug fixes, is promoted to live on a go-
live date to be agreed with each individual client. It
is not possible to promote bug fixes in UAT to live
individually.

L I V E

The live environment hosts the main application and is
the environment in which users complete the majority
of their work. It will often be the most powerful of the
environments.

For each bug identified in live, Enable determines
whether an architectural change is required. Fixes
to address problems identified in live that require a
major architectural change are not promoted directly
to live but are allocated into, and handled as a part
of, the next build cycle. Fixes will be released into the
UAT environment along with all other aspects of the
build and will be tested thoroughly during UAT before
being promoted to live.

A fix which does not require an architectural change,
or is deemed sufficiently urgent, may be applied
directly to Live; all such fixes are thoroughly tested by
Enable before deployment. Our testing methodology
includes test driven development, automated
regression testing, manual regression testing,
automated unit and integration tests, and manual
end-to-end testing. Enable continuously invests in
both improving testing practices and increasing the
breadth of tests carried out.

16

We are also very receptive to working with clients to
identify and create specific automated tests that can
be built into our standard release procedures. When a
fix is released to live for a client reported bug, we will
notify the client when the fix has been released.

On completion of pre-release testing and following
the release of a fix into live, Enable will carry out
additional testing in live to ensure that there is no
unexpected behaviour. In the unlikely event that
unexpected behaviour is detected, Enable will
determine what follow-up action is required in order
to resolve the issue as swiftly as possible. This usually
involves an immediate follow-up deployment or a roll
back of the changes.

While it is standard industry practice for cloud/SaaS
providers to deploy appropriately tested fixes directly
to live environments without seeking permission
from individual clients, the above measures work to
ensure that: The number of fixes deployed directly
to live is kept to a minimal level; The risk of potential
problems being introduced as a result of live fixes will
be significantly reduced.

D O W N T I M E

In cases where a major release candidate needs to be
applied to any environment, Enable will liaise with the
client in advance to agree a suitable date and time for
the release to be actioned. A maintenance page can
be put in place during the deployment — all of this is
done to ensure minimal disruption.

There are times when a support fix will need to be
deployed to an environment. The downtime required
to deploy support fixes is dependent on the nature of
the fix with a minor change likely to have a negligible
impact on users. Deployments to UAT are typically
deployed on an ad hoc basis while deployments to live
can be performed at either a certain, pre-specified
time each day or on an ad hoc basis. Fixes that involve
changing data or with a high functional impact will
often be referred to the client prior to deployment.

R O L L - B A C K

If there are any issues encountered during the release
that cannot be rectified quickly, the release executor
will take the following steps to revert the application
to its previous state:

— Restore the database from the backup taken;
— Restore all of the website files from the backups
taken and remove any temporary “holding” page;
— Restore any scheduled processes from the
backups taken;
— Perform testing and notify the client.

17

Client services

H O W W E H E L P

Our Client Services team are responsible for the
delivery and support given to clients.

The team takes time to deepen their knowledge of
the solution in question, using internal information
systems, specifications and test versions of the
software.

Working closely with and physically adjacent to
Enable’s software engineers, they develop an
understanding of the key issues, risks and subtleties
to ensure they provide the best service possible to
clients.

B U I L D A N D D E L I V E R Y

While the solution is being assembled, the team will
facilitate and support any clarification questions
raised by the client and engineers.

When a solution is ready to be delivered, the team will
familiarise themselves with the solution and attend a
presentation meeting with the client which will involve
demoing the software, talking through release notes,
and kick starting the user acceptance testing process.

A single member of the team will attend these
meetings for smaller projects, but will be joined by
a second member for larger ones. For very small
projects the meeting will sometimes be held online.

D U R I N G U A T

The team will provide support to the client by email,
over the telephone and face to face during UAT. In
a fast-paced cyclical process, the client will review
the work completed and provide feedback which
will then be addressed by engineers, allowing the
client to conduct further reviews. After six weeks,
the client should be able to verify that the individual
statements in the specification documents have been
fulfilled in the software solution they have received.
The key word in the acronym UAT is ‘acceptance’ —
acceptance of the precise functionality described
in the specification — rather than ‘testing’, as the
software will have already been subjected to Enable’s
manual and automated testing.

18

The support service covers:

— General questions;
— Problem diagnostics and bug fixes;
— Thorough investigation work and detailed written
feedback to queries;
— Quotations for changes and advice;
— Proactive software management, performance
and error feed monitoring;
— Software migrations, consolidation and
decommissioning.

Where the team becomes aware that a client has
identified new requirements that are not covered
by existing specification documents, they will refer
the client to Enable’s Customer Success team so
that workshops can be arranged to capture these
requirements in detail.

The Client Services team are available by telephone
and email every business day, 52 weeks of the year
between the hours of 08:00 - 18:00 (GMT), 03:00 -
20:00 (EST) and 00:00 - 17:00 (PST).

O N G O I N G H E L P D E S K S U P P O R T

If a client encounters a bug or has a question, the
team will record a ticket to track the client’s request
and seek a resolution.

The team will keep the client updated on the status
of tickets and will be responsible for liaising with
the client, attending conference calls and making
suggestions when more complex situations emerge
during live operation. The way in which support tickets
are handled will be subject to a contractual service
level agreement (SLA) with major clients receiving
a quarterly support report and a review meeting to
discuss the report. All members of the Client Services
team will contribute to this support process.

FIND US ONLINE

ENABLE.COM +44 203 998 7470 +1 628 251 1057

HELLO@ENABLE.COM 10-12 THE COURTYARD
STRATFORD-UPON-AVON
CV37 9NP, UK

535 MISSION STREET
14TH FLOOR, SAN FRANCISCO
CA 94105, UNITED STATES

UK OFFICE USA OFFICE

